Classic Decision Theory
Faruk Gul’s ECO511 Lectures

summary by N. Antié

At the start of the course we reviewed deterministic choice and at
the end we covered Dekel’s betweenness. These are not contained in
this summary.

Mixture Spaces

B The primitives are an arbitrary set P and an operation h :
[0,1] x P x P — P, we will write h, (p, q) instead of h (a,p, q)

B (P, h) is a mixture space if the following axioms hold:
h1 (p,q) = p (sure mix)

ha (p> q) =hi_, (qap) (CommutatiVitY)
ha (he (D,q) ,q) = hab (p,q) (one-sided distributivity)

n M17 Mza M3 = M4: h, (ha (p7 Q) 7hb (pv (Z)) = hcaJr(lfc)b (pa Q)
(two-sided distributivity)

B M1, M2, M3 = MO: h,(p,p) = p (trivial mix)

B Careful! The following properties are true in lottery spaces, but
not true in general mixture spaces:

L4 ha (hb (pa Q) ,7”') = hab ( 7h'“r(1—b) (q, 7’)) (aSSOCiatiVitY)
1—ab

® hy(p,7) = ha(q,7) = p = q (determinicity)

B A binary relation > on P satisfies the von Neumann—
Morgenstern (vNM) axioms if:

> is a preference relation (complete and transitive)
p=q,a€(0,1) = hg(p,r) = ha(q,r)
p=q=7r=3a,be (0,1): hy (p,7) = q = hy (p,7)

B Given A1l and A2, the following is equivalent to A3 if the set
P is a topological space:

For every p € P, the sets {q : p = q}, {q : ¢ = ¢} are closed

Theorem (Mixture Space Theorem, Herstein-Milnor 1953). Let
(P, h) be a mizture space and = binary relation on P. Then:

= satisfies A1, A2, A3 iff »= has a linear representation.

The representation is unique up to an affine transformation, i.e., if
U : P — R is a linear function that represents = and V is some
other function that represents = then V- =alU + b, for a > 0, b € R.

B U is linear if U (h, (p,q)) = aU (p) + (1 —a) U (q)
B Before proving the theorem, we showed two lemmas
Lemma 4.1. If > satisfies Al, A2, A3 then:
1.1>2a>b>0,p>7r= hy(p,7r) = hp(p,7)

2.a€(0,1),p~q=ha(p,q) ~q; if p>qthenp>=ha(p,q) ~q

3.p=qr=s= hy(p,r)*= hy(q,s) strict if strict.

Lemma 4.2. Let a(p,q,7):=sup{a € [0,1]:q > hy (p,7)}. For
any p,q,r such that p = q =1, hapgr (0:7) ~ q.

B We proved the theorem by construction

B Note that if p ~ ¢ for all p,q € P then we can set U (p) =1 for
all p and we are done

B Thus assume p > p for some p,p € P and for any r € P define:

1 . —
oGin) ifr>"p
1 ifr~p
U(r)= a(ﬁ,r,;ﬁ) ifp>=r>p
0 ifr~p
701(5@77‘) .
71_04(@3#) ifp>r

e Consider each case in turn to show that U represents >
B To show that U is linear, we again consider the various cases

e Assume p - p = p, D= q > p (case 3 for both)

e Note that hy () (T), Q) ~ p, and hy(q) (T), B) ~ q, by 4.2 and
construction of U

e By 4.1(iii) and the above (as well as M4):

ha (p;q) ~ ha (hu) (B,0) s hu (B,p))
= hawep)+a-au@ @:p)

 Thus U (ha (p,q)) = aU (p) + (1 —a) U (q)
B That > is cts and U represents > does not imply that U is cts

e If in addition to the above U is also linear, then U must
also be continous

B The representation is unique in the followin sense

Theorem. IfU is a linear function that represents = and V # U 1is
linear, then V represents = iff 3a > 0, b € R such that V = aU + b.

von Neumann-Morgenstern

B Let X be a finite set of prizes, £ (X) be lotteries over X

B An expected utility representation is a utility function U which
represents = over £ (X), such that there exists some u: X — R
such that U (p) = > .y u(z)p(z) for any p € L (X)

Theorem (von Neumann-Morgenstern 1947). = on L (X) satisfies
A1, A2, A3 iff it has an expected utility representation.

B Proof is a consequence of the mixture space theorem and the
following lemma

Lemma. IfU is a linear function on L (X), then there exists some
u: X — R such that U (p) = >, u(x)p(x) for allp € L(X). Con-
versely, if U (p) = >, u(z)p(x) for allp € L(X), then U is linear.

B e Proof of lemma is by induction on the number of prizes

von Neumann-Morgenstern on Monetary Prizes

B X infinite set of prizes, X = [w,b] CR, w < b
B Let F be the set of CDFs on X

B The axioms are slightly adjusted, as follows:

> is a preference relation and satisfies monotonicity, i.e.,
x > y implies 6, > d,

p=q,a€(0,1)= h,(p,r) = he(q,7)



For every F' € F, the sets {G: G = F} and {G: F = G}
are closed under the topology induced by the metric
d(F,G) = [|F - G|dx

B A3* implies we are endowing F with the weak topology

e A3* can be replaced by other notions of weak convergence

e c.g. if F — F at every continuity point of F' and F'"™ = G
for all n, then F > G

Theorem. = on F satisfies A1+M, A2, A3™ iff there is a contin-
uous, strictly increasing u : X — R, such that:
U(F)= /u(:c) dF (z) represents - .

B I second order stochastically dominates G if F # G and
[° . G(zx) dz > [ F(z) da for all 2

B > is risk averse when F' > G, if F' second order dominates G

Theorem (Notions of Risk Aversion). Let = on F satisfy A1+M,
A2, A3" and u be the vNM utility index. Then:

) ) 1 1
> risk averse < wu strictly concave & 5%x+%y - §5w + §6y.

Anscombe-Aumann

B Let S ={1,...,n} be a finite set of states, X be a set of prizes
B Let H be aset of acts f: 5 — L(X)
B We have the following AA axioms:

These are just A1-A3 for = on H

x = y for some z,y € X (non degenerate preference)

For every f,g, f,§, such that there are non-null 4, j € S so
that fi = gi for all k # 1, f;g = gp forallk # jand f; = fj,
g; = §j, we have f = g implies f > ¢ (state separability)

B A state ¢ € S is null if for all f,g such that f; = g;, for j # ¢
we have f ~ ¢

e Note that AAS5 implies state-separable preferences

Theorem (Anscombe-Aumann 1963). = satisfies AA1l — AA5 on
H iff there exists a non-constant linear U on L (X), and a probability
woon S such that:

W(f) =Y U(fs)uls)
seS

represents =. U is unique up to a positive affine transformation.
B The key part of the proof is the lemma below

Lemma. Function W: H — R is linear iff 3{Us} g, such that

W(f) = ZSES US (fs)

B The rest of the proof proceeds as follows:
e Using A A5 show that all Uy from the lemma represent the
same preferences up to positive affine transformation
e By A A4 there is one non-null state ¢ € .S

o Let the positive affine transformations taking utility
from state j to state i be a; > 0, b,

e Define i (j) = a; and normalize to sum to 1

B We extended this to arbitrary S, but restricting to H?, the set
of simple acts, i.e., acts which yield finite number of prizes

B In this case we needed a slightly stronger axiom AAS5:

f,g € H° and p,q € L£L(X), and non-null events E,E,
such that: fs = g for s ¢ E, fs = g, for s ¢ E, and
fs=fs=p gs=gs=gqforalsecE, §ecE we have
f =g implies f =

B Event £ C Sisnullif fs =g, Vs € S\ F implies f ~ g

Qualitative Probability

B We began by looking at some facts from probability theory

Fact 1. A finitely-additive probability i on A, an algebra on S,
can be extended to 2°.

Fact 2. A o-additive probability p on A, an algebra on S, can be
extended to o (A).

B A probability p on an algebra A is convex-valued if VA € A,
r € [0,1], there is B C A such that p(B) = ru (A)

B A probability ¢ on an algebra A is non-atomic if Vi (A) > 0,
there is B C A such that 0 < u (B) < u(A4)

Theorem. Convex-valued i = non-atomic p. The converse is true
for o-additive p.

B Preference =* over A is a qualitative probability if:

=* is complete and transitive
AX* @, forall A

S -* o
A>*Biff AUC =* BUC,when ANC=BnNC=10
B Further, there was an important axioms regarding partitions
E] A +=* B implies 3{Ay, ..., A, }, a partition of S, such that
A>* (BUA;) for every A;
e Says that not too many things are different from each

other"

B Kreps book shows that a qualitative probability, >=*, satisfies P
iff it is both fine and tight:

e >*is fine if for all A =* &, there is a finite partition of S
no member of which is as likely as A

o ~*is tight, if for all A =* B, there is C such that A >*
(BUuC)>*B

B Below are some examples of the above theorem

o Let S =1[0,1]U[2,3] = 51 U8 and write A = A3 U Ay
(Where A1 Q 517142 g SQ)

Example (Lexicographic). A >=* B iff |A1| > |B1| or if |A1| = | B1|
and |A2| > |BQ|

B Fineness fails: For A = [2,2.5], we have A >=* &, by every finite
partition includes an element with a positive mass on S

Example (Substitutes). A =* B iff |A1]| + |Az2| > |B1| + |B2|, or if
[Av| + [A2| = [Bi] + |Bz| and |A1| > | B



B Tightness fails: For A =[0,0.5], B = [2,2.5], we have A =* B,
but nothing can be added to B that will not make it strictly
more likely than A

Theorem. Let >=* satisfy Q1-Q4 and P. Then 3u a finitely-
additive prob. that represents =*; u is unique and convex valued.

Fact*. Every =* satisfying Q1-Q4 and P has an 2"-
equipartition (for every n), and for A >* B, there is C C A such
that C ~* B.

B The proof of the theorem uses this fact and a few lemmas

Lemma 0. Assume ANB =0 =CnD. If A =* C and
B =* D, then AUB =* CUD. Further A =* C and B =* D
implies AUB =* CUD.

Lemma 1. Let a = {A1,..., A}, b = {B1,...,Bn} be two
equipartitions of S. Then (i) n = m implies A; ~* B; for all
i,j (i) n > m implies A; =* B; for all i,j (iii) n = 2m implies
A; ~* B; U By.

B Define k(n,a,A) =
{4,
B Further define k (n, A) = min,cq2n &k (n,a, A)

min {k : U¥_ A, =* A}, for some a =

e By lemma 1, k(n,A) =k (n,a, A)

. T k(n,A)
B Finally define p (A) = lim,, =53

Lemma 2. u(A) is a finitely-additive probability.

B The final step is to show p represents >=*and is unique and
convex valued

Savage
B Let S be an artbitrary set of states, X the set of prizes
B An act f: S — X is simple if it takes a finite number of prizes

B Let > be a relation on F', the set of all simple acts

e For any z € X, let x € F be the act always returning prize
x

e Let fAg denote the act which is the same as f on states
A C S and the same as g on S\ A

B The Savage axioms are:

> is a preference relation

There is some z,y € X, F such that z > y (non-
degeneracy)

fAh = gAh implies fAh' = gAh' (sure-thing principle)
If A is non-null, then xAh > yAh Vh iff z = y (Kreps
sure-thing principle)

xAy = xBy implies 2’ Ay’ = 2’ By/, for all x = y, 2’ = o/
(states are independent of prizes)

For all f > g, x € X there is a finite partition of S such
that xAf > g, and f > xAg (strong continuity)

B Some useful observations

e For S6 to be satisfied S must be infinite
e For S5 to be violated we need at least 3 prizes

e The existence of an additive representation implies S3

e The strict version of S4 is for all non-null A: z > y iff
Jh.xAh = yAh

e The "for all A" is important for constructing counter-
examples of S4

e In the absence of completeness, zero measure sets might
not be null, as by definition, A is null if for all f,g, h:
fAh ~ gAh, but the latter may not be comparable

Theorem (Savage 1954). A binary relation = on the set of sim-
ple savage acts satisfies S1-S6 iff there exists a non-constant func-
tion u on X, and a finitely-additive probability on (S, 25), such that
W(f) =S,exu(@) p(f"(z)) represents =. Furthermore, p is
unique and u is unique up to an affine transformation.

B Steps of the proof:

e Pick any x > y and define =* by A =* B iff tAy =* xBy.

e >*isa qualitative probability that satisfies Axiom P, hence
there exists a unige convex valued finitely-additive proba-
bility p that represents =*

e For f € F, define py by py(z) = p(f~* (z)), ie. fold-
down (simple) acts to (simple) lotteries

e Show that ¢ : F' — L9 (X), defined by ¢ (f) = p; is onto,
i.e. every (simple) lottery p € £°(X) has an act that
"reduces" to it

® py =p, implies f ~ g

e Define = on LY (X) by p =0 ¢ iff there are f, g such that
fo=p gp=qand fiz g

o U satisfies (VNM) A1-A3 and therefore there exists a func-
tion u: X — R that represents = on £° (X)

e Combined together, u, u yield the desired representation:

W(f) =Yaexu@ p(f (@)

Comments about Finiteness Assumptions

B Throughout this course we worked with finite primitive sets,
with occasional excursions into the infinite, in particular:

e vNM: X is a finite set of prizes

e vNM over monetary prizes: here we considered infinite
X, but with the natural order structure, allowing us to
approximate elements in £ (X) by simple lotteries, using
an added monotonicity requirement

e A-A: S is finite and in the homework we extended the
result to infinite S but restricted to simple acts, i.e. acts
that give a finite number of outcomes (lotteries in £ (X)
in this case)

e Savage: S is infinite (required for P to hold), but we re-
strict attention to simple savage acts



