
Classic Decision Theory
Faruk Gul�s ECO511 Lectures summary by N. Antić

At the start of the course we reviewed deterministic choice and at
the end we covered Dekel�s betweenness. These are not contained in
this summary.

Mixture Spaces

� The primitives are an arbitrary set P and an operation h :
[0; 1]� P � P ! P , we will write ha (p; q) instead of h (a; p; q)

� hP; hi is a mixture space if the following axioms hold:

M1 h1 (p; q) = p (sure mix)

M2 ha (p; q) = h1�a (q; p) (commutativity)

M3 ha (hb (p; q) ; q) = hab (p; q) (one-sided distributivity)

� M1,M2,M3)M4: hc (ha (p; q) ; hb (p; q)) = hca+(1�c)b (p; q)
(two-sided distributivity)

� M1, M2, M3 ) M0: ha (p; p) = p (trivial mix)

� Careful! The following properties are true in lottery spaces, but
not true in general mixture spaces:

� ha (hb (p; q) ; r) = hab
�
p; h a(1�b)

1�ab
(q; r)

�
(associativity)

� ha (p; r) = ha (q; r)) p = q (determinicity)

� A binary relation � on P satis�es the von Neumann�
Morgenstern (vNM) axioms if:

A1 � is a preference relation (complete and transitive)
A2 p � q; a 2 (0; 1)) ha (p; r) � ha (q; r)
A3 p � q � r ) 9a; b 2 (0; 1) : ha (p; r) � q � hb (p; r)

� Given A1 and A2, the following is equivalent to A3 if the set
P is a topological space:

A3* For every p 2 P , the sets fq : p � qg, fq : q � qg are closed

Theorem (Mixture Space Theorem, Herstein-Milnor 1953). Let
hP; hi be a mixture space and � binary relation on P . Then:

� satis�es A1, A2, A3 i¤ � has a linear representation.

The representation is unique up to an a¢ ne transformation, i.e., if
U : P ! R is a linear function that represents � and V is some
other function that represents � then V = aU + b, for a > 0, b 2 R.

� U is linear if U (ha (p; q)) = aU (p) + (1� a)U (q)

� Before proving the theorem, we showed two lemmas

Lemma 4.1. If � satis�es A1, A2, A3 then:

1. 1 � a > b � 0, p � r ) ha (p; r) � hb (p; r)

2. a 2 (0; 1), p � q ) ha (p; q) � q; if p � q then p � ha (p; q) � q

3. p � q; r � s ) ha (p; r) � hb (q; s) strict if strict.

Lemma 4.2. Let � (p; q; r) := sup fa 2 [0; 1] : q � ha (p; r)g. For
any p; q; r such that p � q � r, h�(p;q;r) (p; r) � q.

� We proved the theorem by construction

� Note that if p � q for all p; q 2 P then we can set U (p) = 1 for
all p and we are done

� Thus assume p � p for some p; p 2 P and for any r 2 P de�ne:

U (r) =

8>>>>>><>>>>>>:

1

�(r;p;p)
if r � p

1 if r � p
�
�
p; r; p

�
if p � r � p

0 if r � p
��(p;p;r)
1��(p;p;r)

if p � r

� Consider each case in turn to show that U represents �

� To show that U is linear, we again consider the various cases

� Assume p � p � p, p � q � p (case 3 for both)

� Note that hU(p)
�
p; p
�
� p, and hU(q)

�
p; p
�
� q, by 4.2 and

construction of U

� By 4.1(iii) and the above (as well as M4):

ha (p; q) � ha
�
hU(p)

�
p; p
�
; hU(q)

�
p; p
��

= haU(p)+(1�a)U(q)
�
p; p
�
,

� Thus U (ha (p; q)) = aU (p) + (1� a)U (q)

� That � is cts and U represents � does not imply that U is cts

� If in addition to the above U is also linear, then U must
also be continous

� The representation is unique in the followin sense

Theorem. If U is a linear function that represents � and V 6= U is
linear, then V represents � i¤ 9a > 0, b 2 R such that V = aU + b.

von Neumann-Morgenstern

� Let X be a �nite set of prizes, L (X) be lotteries over X

� An expected utility representation is a utility function U which
represents � over L (X), such that there exists some u : X ! R
such that U (p) =

P
x2X u (x) p (x) for any p 2 L (X)

Theorem (von Neumann-Morgenstern 1947). � on L (X) satis�es
A1, A2, A3 i¤ it has an expected utility representation.

� Proof is a consequence of the mixture space theorem and the
following lemma

Lemma. If U is a linear function on L (X), then there exists some
u : X ! R such that U (p) =

P
x u (x) p (x) for all p 2 L (X). Con-

versely, if U (p) =
P

x u (x) p (x) for all p 2 L (X), then U is linear.

� � Proof of lemma is by induction on the number of prizes

von Neumann-Morgenstern on Monetary Prizes

� X in�nite set of prizes, X = [w; b] � R, w < b

� Let F be the set of CDFs on X

� The axioms are slightly adjusted, as follows:

A1+M � is a preference relation and satis�es monotonicity, i.e.,
x > y implies �x � �y

A2 p � q; a 2 (0; 1)) ha (p; r) � ha (q; r)
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A3* For every F 2 F, the sets fG : G � Fg and fG : F � Gg
are closed under the topology induced by the metric
d (F;G) =

R
jF �Gj dx

� A3* implies we are endowing F with the weak topology

� A3* can be replaced by other notions of weak convergence
� e.g., if Fn ! F at every continuity point of F and Fn � G
for all n, then F � G

Theorem. � on F satis�es A1+M, A2, A3� i¤ there is a contin-
uous, strictly increasing u : X ! R, such that:

U (F ) =

Z
u (x) dF (x) represents � .

� F second order stochastically dominates G if F 6= G andR z
�1G (x) dx �

R z
�1 F (x) dx for all z

� � is risk averse when F � G, if F second order dominates G

Theorem (Notions of Risk Aversion). Let � on F satisfy A1+M,
A2, A3� and u be the vNM utility index. Then:

� risk averse , u strictly concave , � 1
2x+

1
2y
� 1

2
�x +

1

2
�y.

Anscombe-Aumann

� Let S = f1; :::; ng be a �nite set of states, X be a set of prizes

� Let H be a set of acts f : S ! L (X)

� We have the following AA axioms:

AA1-AA3 These are just A1�A3 for � on H
AA4 x � y for some x; y 2 X (non degenerate preference)

AA5 For every f; g; f̂ ; ĝ, such that there are non-null i; j 2 S so
that fk = gk for all k 6= i, f̂k = ĝk for all k 6= j and fi = f̂j ,
gi = ĝj , we have f � g implies f̂ � ĝ (state separability)

� A state i 2 S is null if for all f; g such that fj � gj , for j 6= i
we have f � g

� Note that AA5 implies state-separable preferences

Theorem (Anscombe-Aumann 1963). � satis�es AA1�AA5 on
H i¤ there exists a non-constant linear U on L (X), and a probability
� on S such that:

W (f) :=
X
s2S

U (fs)� (s)

represents �. U is unique up to a positive a¢ ne transformation.

� The key part of the proof is the lemma below

Lemma. Function W : H ! R is linear i¤ 9 fUsgs2S, such that
W (f) =

P
s2S Us (fs).

� The rest of the proof proceeds as follows:

� Using AA5 show that all Us from the lemma represent the
same preferences up to positive a¢ ne transformation

� By AA4 there is one non-null state i 2 S
� Let the positive a¢ ne transformations taking utility
from state j to state i be aj > 0, bj

� De�ne � (j) = aj and normalize to sum to 1

� We extended this to arbitrary S, but restricting to H0, the set
of simple acts, i.e., acts which yield �nite number of prizes

� In this case we needed a slightly stronger axiom AA5:

AA5* f; g 2 H0, and p; q 2 L (X), and non-null events E; Ê,
such that: fs = gs for s =2 E, f̂s = ĝs for s =2 Ê, and
fs = f̂bs = p, gs = ĝbs = q for all s 2 E, bs 2 Ê we have
f � g implies f̂ � ĝ

� Event E � S is null if fs = gs, 8s 2 S r E implies f � g

Qualitative Probability

� We began by looking at some facts from probability theory

Fact 1. A �nitely-additive probability � on A, an algebra on S,
can be extended to 2S.
Fact 2. A �-additive probability � on A, an algebra on S, can be

extended to � (A).

� A probability � on an algebra A is convex-valued if 8A 2 A,
r 2 [0; 1], there is B � A such that � (B) = r� (A)

� A probability � on an algebra A is non-atomic if 8� (A) > 0,
there is B � A such that 0 < � (B) < � (A)

Theorem. Convex-valued � ) non-atomic �. The converse is true
for �-additive �.

� Preference �� over A is a qualitative probability if:

Q1 �� is complete and transitive

Q2 A �� ?, for all A

Q3 S �� ?

Q4 A �� B i¤ A [ C �� B [ C, when A \ C = B \ C = ;

� Further, there was an important axioms regarding partitions

P A �� B implies 9 fA1; :::; Ang, a partition of S, such that
A �� (B [Ai) for every Ai

� Says that not too many things are di¤erent from each
other"

� Kreps book shows that a qualitative probability, ��, satis�es P
i¤ it is both �ne and tight:

� �� is �ne if for all A �� ?, there is a �nite partition of S
no member of which is as likely as A

� ��is tight, if for all A �� B, there is C such that A ��
(B [ C) �� B

� Below are some examples of the above theorem

� Let S = [0; 1] [ [2; 3] = S1 [ S2 and write A = A1 [ A2
(where A1 � S1; A2 � S2)

Example (Lexicographic). A �� B i¤ jA1j > jB1j or if jA1j = jB1j
and jA2j > jB2j

� Fineness fails: For A = [2; 2:5], we have A �� ?, by every �nite
partition includes an element with a positive mass on S1

Example (Substitutes). A �� B i¤ jA1j+ jA2j > jB1j+ jB2j, or if
jA1j+ jA2j = jB1j+ jB2j and jA1j > jB1j
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� Tightness fails: For A = [0; 0:5], B = [2; 2:5], we have A �� B,
but nothing can be added to B that will not make it strictly
more likely than A

Theorem. Let �� satisfy Q1�Q4 and P. Then 9� a �nitely-
additive prob. that represents ��; � is unique and convex valued.

Fact*. Every �� satisfying Q1�Q4 and P has an 2n-
equipartition (for every n), and for A �� B, there is C � A such
that C �� B.

� The proof of the theorem uses this fact and a few lemmas

Lemma 0. Assume A \ B = ; = C \ D. If A �� C and
B �� D, then A [ B �� C [ D. Further A �� C and B �� D
implies A [B �� C [D.
Lemma 1. Let a = fA1; : : : ; Ang ; b = fB1; : : : ; Bmg be two

equipartitions of S. Then (i) n = m implies Ai �� Bj for all
i; j (ii) n > m implies Ai �� Bj for all i; j (iii) n = 2m implies
Ai �� Bj [Bk.

� De�ne k (n; a;A) = min
�
k : [ki=1Ai �� A

	
, for some a =

fAig2
n

i=1

� Further de�ne k (n;A) = mina2a2n k (n; a;A)

� By lemma 1, k (n;A) = k (n; a;A)

� Finally de�ne � (A) = limn
k(n;A)
2n

Lemma 2. � (A) is a �nitely-additive probability.

� The �nal step is to show � represents ��and is unique and
convex valued

Savage

� Let S be an artbitrary set of states, X the set of prizes

� An act f : S ! X is simple if it takes a �nite number of prizes

� Let � be a relation on F , the set of all simple acts

� For any x 2 X, let x 2 F be the act always returning prize
x

� Let fAg denote the act which is the same as f on states
A � S and the same as g on S rA

� The Savage axioms are:

S1 � is a preference relation
S2 There is some x; y 2 X;F such that x � y (non-

degeneracy)

S3 fAh � gAh implies fAh0 � gAh0 (sure-thing principle)
S4 If A is non-null, then xAh � yAh 8h i¤ x � y (Kreps

sure-thing principle)

S5 xAy � xBy implies x0Ay0 � x0By0, for all x � y, x0 � y0
(states are independent of prizes)

S6 For all f � g, x 2 X there is a �nite partition of S such
that xAf � g, and f � xAg (strong continuity)

� Some useful observations

� For S6 to be satis�ed S must be in�nite
� For S5 to be violated we need at least 3 prizes
� The existence of an additive representation implies S3

� The strict version of S4 is for all non-null A: x � y i¤
9h:xAh � yAh

� The "for all h" is important for constructing counter-
examples of S4

� In the absence of completeness, zero measure sets might
not be null, as by de�nition, A is null if for all f; g; h:
fAh � gAh, but the latter may not be comparable

Theorem (Savage 1954). A binary relation � on the set of sim-
ple savage acts satis�es S1-S6 i¤ there exists a non-constant func-
tion u on X, and a �nitely-additive probability on

�
S; 2S

�
, such that

W (f) =
P

x2X u (x)�
�
f�1 (x)

�
represents �. Furthermore, � is

unique and u is unique up to an a¢ ne transformation.

� Steps of the proof:

� Pick any x � y and de�ne �� by A �� B i¤ xAy �� xBy.
� �� is a qualitative probability that satis�es Axiom P, hence
there exists a uniqe convex valued �nitely-additive proba-
bility � that represents ��

� For f 2 F , de�ne pf by pf (x) = �
�
f�1 (x)

�
, i.e. fold-

down (simple) acts to (simple) lotteries

� Show that � : F ! L0 (X), de�ned by � (f) = pf is onto,
i.e. every (simple) lottery p 2 L0 (X) has an act that
"reduces" to it

� pf = pg implies f � g
� De�ne �0 on L0 (X) by p �0 q i¤ there are f; g such that
fp = p, gp = q, and f � g

� �0 satis�es (vNM) A1-A3 and therefore there exists a func-
tion u : X ! R that represents �0 on L0 (X)

� Combined together, u, � yield the desired representation:
W (f) =

P
x2X u (x)�

�
f�1 (x)

�
Comments about Finiteness Assumptions

� Throughout this course we worked with �nite primitive sets,
with occasional excursions into the in�nite, in particular:

� vNM: X is a �nite set of prizes

� vNM over monetary prizes: here we considered in�nite
X, but with the natural order structure, allowing us to
approximate elements in L (X) by simple lotteries, using
an added monotonicity requirement

� A-A: S is �nite and in the homework we extended the
result to in�nite S but restricted to simple acts, i.e. acts
that give a �nite number of outcomes (lotteries in L (X)
in this case)

� Savage: S is in�nite (required for P to hold), but we re-
strict attention to simple savage acts
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